Software Considerations in Highly Reliable Systems Development

Jasjit Heckathorn Draper Laboratory

Software Considerations in Highly Reliable Systems Development

- □ Software issues in Systems Development and Maintenance
- Software Systems Engineering
- Software Systems Engineering Practice at Draper

Software issues in Systems Development and Maintenance

- □ Systems are becoming larger, software intensive, and complex
 - Software is managing the increasing complexity of systems
 - Software provides the cohesiveness and control of data
 - Software provides the flexibility to work around/correct hardware or other problems that are found late in the development cycle
- Software cost is becoming the biggest driver of life cycle system cost since maintenance cost is mostly due to software changes required to
 - Respond to changing system requirements
 - Add functionality
 - Correct software or hardware problems
 - Upgrade obsolete hardware or COTS configuration
- Major systems failures are attributable to software failures
 - Ariane 5
 - Mars Pathfinder

- Application of appropriate software engineering technologies and processes to transform an operational need into a high quality and cost effective product
 - Technical considerations
 - Management considerations
- Technical considerations
 - System requirements and design
 - » Partitioning and allocation to software
 - » Hardware software trade-offs
 - Software requirements analysis
 - » Modeling
 - » Requirements specification and verification
 - Software design
 - » Use of design principles to facilitate maintainability and supportability
 - » Design documents

- Technical considerations (cont)
 - Code and unit test
 - Software integration and test
 - » Test Documentation
 - » Hardware simulations
 - » Software fault seeding
 - » Operational Scenarios
 - » Stress tests
 - Software/ hardware integration and test
 - » Interface tests
 - » Timing tests
 - » Hardware in the loop tests
 - System test

- Management Considerations
 - Requirements management
 - » Traceability
 - » Impact of change
 - Software planning
 - » Size, cost and schedule estimation
 - » Development approach (incremental, evolutionarily, spiral, prototype)
 - » Risk assessment
 - » Reuse, COTS considerations
 - » Products and Reviews
 - » Development environment
 - Methodologies and tools
 - » Test process and test environment

- Management Considerations(cont)
 - Software tracking and oversight
 - » Status reviews and design reviews
 - » Metrics
 - Software configuration management
 - » Baseline management
 - » Software build management
 - Software quality assurance
 - Communication and coordination

- Draper provides innovative technical solutions associated with complex dynamic systems that must be highly reliable
 - Technical, reliability and safety considerations are and have always been of vital importance
- Recently management considerations have gained attention through the software process improvement initiative
 - Achieved SEI Maturity Level 3 in June 97
 - Standard process for the entire software development cycle exists and software engineering staff is trained
 - Projects use the Tailoring Guidelines to develop a software project plan, follow the plan and are monitored and audited against it
 - Projects Asset database contains methods, procedures, templates, tools, samples and Lessons Learned on projects
 - Metrics database is being populated for use in estimation
 - New technologies and tools are evaluated and inserted in projects

- □ Legacy Systems Development Experience
 - A10 CDU version 1 1991- 1995
 - » Purpose Integrate GPS into aircraft, and loosely couple with Inertial Nav System
 - New CDU hardware and software to couple the GPS and INS and control Improved Data Modem (IDM) communications
 - » Technologies
 - Object oriented design, Ada and assembly mix
 - Cadre Teamwork
 - Host VAX, Target Motorola 68020
 - XDAda (enhanced for for real-time tasking requirements)
 - In-circuit-emulator, Hardware-in-the-loop, Hot Bench
 - » DOD-STD-2167A process
 - Software Development Plan
 - Requirements management (home grown tool)
 - Configuration management (VaxCMS)
 - Tracking and Oversight (PS5, status meetings, software problem reports, user meetings, customer reviews)
 - Peer reviews
 - SQA and IV&V

- □ Legacy Systems Development Experience
 - A10 CDU version 2 1996-1998
 - » Purpose Replace existing GPS and INS with Honeywell supplied Embedded GPS/INS (EGI)
 - » Technologies
 - Object oriented design, Ada and assembly mix
 - Host VAX, Target Motorola 68030
 - XDAda (enhanced for real-time tasking requirements)
 - In-circuit-emulation, Hardware-in-the-loop, CAST simulator and INS simulator, Hot Bench
 - COTS integration
 - » DOD-STD-2167A process enhanced with Standard Draper process
 - Software Development Plan
 - Requirements management (home grown tool)
 - Configuration management (Vax CMS, added scripts, automated build process)
 - Tracking and Oversight (MS Project, home grown metrics and problem tracking tool, user meetings, customer reviews)
 - SQA and IV&V
 - Peer reviews

□ Legacy Systems Development Experience

- GPS Ground Stations Replacement 1993-1995
 - » Purpose Develop system design to replace obsolete computer hardware and software in GPS Ground Antenna and Monitor Stations
 - » Unique technical approach for analyzing requirements for legacy systems using existing documentation and discussions with users and maintainers of software
 - System requirements
 - Multiple views of the system (Behavioral, structural, data)
 - System Segment Specification (DOD-STD-2167A)
 - System Design
 - Reliability, maintainability, extensibility, supportability considerations
 - Open System Architecture, compliant with Industry standards
 - System Design Document (DOD-STD-2167A)
 - Software Requirements
 - Object Oriented Analysis (Rumbaugh)
 - Software Requirements Specification (DOD-STD-2167A)
 - » Process
 - Project plan
 - Methodology and tool assessment followed by team training
 - Requirements traceability (RTM)

- □ New Systems Development Experience
 - Advanced Seal Delivery System (ASDS) 1994-1997
 - » Purpose Provide guidance, navigation and control for manned submersibles and develop Integrated Control and Display (ICAD) processing
 - Graphical Users Interface (GUI)
 - Performance Monitoring Fault Localization (PMFL)
 - » Software Architecture and Top Level Design Reused from fielded Deep Submergence Rescue Vehicle (DSRV)
 - Host Sun, Target 68040, C programming language
 - Reverse Engineer DSRV Software (Hindsight 20/20)
 - COTS Operating System (VxWorks)
 - Hardware in the loop
 - » Mil-STD-498 process enhanced with Standard Draper Process
 - Detailed software development plan
 - Requirements Management (home grown tool)
 - Configuration Management (Continus)
 - Tracking and Oversight (PS5, MS Project, home grown metrics and problem tracking tool, user meetings, customer reviews, unit test coverage, risk management)
 - SQA and IV&V
 - Peer reviews

- □ New Systems Development Experience
 - Simulation Based Test and Evaluation Capability(SiBaTEC)1995-1998
 - » Purpose Develop a user friendly real-time simulation facility that allows guidance systems developers to formulate and test performance and technology hypotheses
 - Graphical User Interface (GUI)
 - 3D animations
 - » State-of-the-art technologies, development environment and design tools
 - Object oriented analysis and design, C++
 - Multiple platforms (Solaris, IRIX, VxWorks, NT/95)
 - Rose, Purify, Quantify
 - » Standard Draper process facilitated by tools, with incremental development
 - Software development plan
 - Requirements Management (DOORS)
 - Configuration Management (Clearcase)
 - Tracking and oversight (MS Project and home grown metrics tool, collocated team, user meetings, regular status meetings with team and management, and customer/user reviews, risk list, process audits)
 - Peer reviews

□ Summary

- Technical considerations and management considerations work hand in hand to produce a highly reliable, safe and cost effective system
- Use new technologies and tools, but assess risks and have a mitigation plan
 - » COTS can work both ways
- Design reviews, peer reviews are very helpful in early error detection
 - » Involve users, customers and other groups that have interfaces
- A process <u>appropriate</u> for the end use of the system can provide visibility, mitigate risk and enhance quality
 - » Planning, requirements management, configuration management, tracking and oversight, and risk management can help control cost
- Communication and coordination among the various developers can prevent a lot of interface problems and save time during system integration

